Цепь переменного тока с индуктивностью

Как мы лицезрели выше, при включении, выключении и при всяком изменении тока в электронной цепи вследствие скрещения проводника своим же своим магнитным полем в нем появляется индуктированная э. д. с. Эту э. д. с. мы называли э. д. с. самоиндукции. Э. д. с. самоиндукции имеет реактивный нрав. Так, к примеру, при увеличении Цепь переменного тока с индуктивностью тока в цепи э. д. с. самоиндукции будет ориентирована против э. д. с. источника напряжения, и потому ток в электронной цепи не может установиться сходу. И, напротив, при уменьшении тока в цепи индуктируется э. д. с. самоиндукции такового направления, что, мешая току исчезать, она поддерживает этот убывающий ток.

Как Цепь переменного тока с индуктивностью нам уже понятно, э. д. с. самоиндукции находится в зависимости от скорости конфигурации тока в цепи и от индуктивно-

сти этой цепи (числа витков, наличия железных сердечников).

В цепи переменного тока э. д. с. самоиндукции появляется безпрерывно, потому что ток в цепи безпрерывно меняется.

На фиг. 143 представлена Цепь переменного тока с индуктивностью схема цепи переменного тока, содержащей катушку с индуктивностью L без железного сердечника. Для простоты будем считать поначалу, что активное сопротивление катушки сильно мало и им можно пренебречь.

Реакти́вное сопротивле́ние — электронное сопротивление, обусловленное передачей энергии переменным током электронному либо магнитному полю (и назад). Если через обмотку катушки индуктивности Цепь переменного тока с индуктивностью с магнитопроводом (сердечником) пропустить переменный ток, изменяющийся по синусоидальному закону sim t (см. рис. 3), возникнет, как мы гласили, магнитный поток, намагничивающий магнитопровод. Ток и магнитный поток в магнитопроводе будут также переменными и возбудят в обмотке ЭДС индукции. Она равна напряжению на выводах катушки, и в то же время пропорциональна скорости конфигурации Цепь переменного тока с индуктивностью магнитного потока. В конечном итоге напряжение будет сдвинуто по фазе на -90° относительно тока. Это означает, что ток отстает по фазе на 90° от напряжения.
Ток, протекающий через катушку, именуется реактивным, и в отличие от тока через активное сопротивление, он не приводит к расходованию мощности.

Кривые. Переменный синусоидальный ток в течение периода Цепь переменного тока с индуктивностью имеет разные секундные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, также при электронных измерениях неловко воспользоваться моментальными либо амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Не считая того, об электронном эффекте временами Цепь переменного тока с индуктивностью изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Более комфортным оказалось введение понятий так именуемых действующих значений тока и напряжения. В базу этих понятий положено термическое (либо механическое) действие тока, не зависящее от его направления.

Действующее значение Цепь переменного тока с индуктивностью переменного тока - это значение неизменного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки деяния, производимого переменным током, мы сравним его деяния с термическим эффектом неизменного тока.

Мощность Р неизменного тока I, проходящего через сопротивление r, будет Р = Р2r Цепь переменного тока с индуктивностью.

Мощность переменного тока выразится как средний эффект моментальной мощности I2r за целый период либо среднее значение от (Im х sinωt)2 х r за то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность неизменного тока и мощность при переменном токе, имеем: I2r = Mr Цепь переменного тока с индуктивностью, откуда I = √M,

Величина I именуется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим последующим образом.

Построим синусоидальную кривую конфигурации тока. Возведя в квадрат каждое секундное значение тока, получим кривую зависимости Р от времени.

Действующее значение переменного тока

Обе половины этой кривой лежат выше горизонтальной оси Цепь переменного тока с индуктивностью, потому что отрицательные значения тока (-i) во 2-ой половине периода, будучи построены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади, ограниченной кривой i2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное с помощью высшей арифметики, будет Цепь переменного тока с индуктивностью равно 1/2I2m. Как следует, М = 1/2I2m

Потому что действующее значение I переменного тока равно I = √M, то совсем I = Im / √2

Аналогично зависимость меж действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √2,E= Em / √2

Действующие значения переменных величин обозначаются строчными знаками Цепь переменного тока с индуктивностью без индексов (I, U, Е).

На основании произнесенного выше можно сказать, что действующее значение переменного тока равно такому неизменному току, который, проходя через то же сопротивление, что и переменный ток, за то же время выделяет такое же количество энергии.

ВЕКТОРНАЯ ДИАГРАММА

графич. изображение значений физ. величин, изменяющихся по гармони ч. закону, и соотношений Цепь переменного тока с индуктивностью меж ними с помощью векторов. В. д. обширно используют в электротехнике, акустике, оптике и т. д. В. д. в электротехнике - графич. изображение в виде векторов синусоидально изменяющихся электрич. величин. На рис. дана В. д. силы тока i = Imsin(2ПИft- 30°) и электрич. напряжения и = Um sin2GBft(i Цепь переменного тока с индуктивностью,u - секундные значения величин, Im, Um - их амплитуды, f - частота, t - время, 30 - нач. фаза тока при t = 0).

Векторная диаграмма

11. Однофазовая эл. цепь переменного тока с R и L. Анализ напряжений цепи. Закон Ома для цепи переменного тока.

Настоящая катушка индуктивности обычно имеет и активное сопротивление, которым нельзя пренебречь. На Цепь переменного тока с индуктивностью рисунке 1 “а” показана цепь катушки индуктивность которой L, а активное сопротивление R. на рисунке 1 “б” изображены кривые моментальных значений напряжения u и тока i в цепи R и L, а на рисунке 1 “в” - обоюдное размещение векторов напряжения Um и тока Im, сдвинутых относительно один другого на угол .

Если в Цепь переменного тока с индуктивностью цепи с R и L проходит синусоидальный ток , то секундное значение активной составляющей напряжения может быть определено как . Секундное значение напряжения на индуктивном сопротивлении в согласовании с формулой

.

(1).

Для анализа и расчета электронная цепь графически представляется в виде электронной схемы, содержащей условные обозначения ее частей и методы их соединения. Электронная схема простейшей электронной Цепь переменного тока с индуктивностью цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.

Рис. 1.1

Все устройства и объекты, входящие в состав электронной цепи, могут быть разбиты на три группы:

1) Источники электронной энергии (питания).

Общим свойством всех источников питания является преобразование какого-нибудь вида энергии в электронную. Источники, в каких происходит преобразование Цепь переменного тока с индуктивностью неэлектрической энергии в электронную, именуются первичными источниками. Вторичные источники – это такие источники, у каких и на входе, и на выходе – электронная энергия (к примеру, выпрямительные устройства).

2) Потребители электронной энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (к примеру, нагревательный прибор). Время от времени потребители именуют Цепь переменного тока с индуктивностью нагрузкой.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых настоящая цепь не работает.

Все элементы цепи окутаны одним электрическим процессом.

В электронной схеме на рис. 1.1 электронная энергия от источника ЭДС E, владеющего внутренним сопротивлением r0, при помощи вспомогательных частей цепи передаются через регулировочный Цепь переменного тока с индуктивностью реостат R к потребителям (нагрузке): электронным лампочкам EL1 и EL2.

Закон Ома для переменного тока Для полного осознания электронных процессов в цепях переменного тока приводим Закон Ома для переменного тока. Он отличается от закона для цепей неизменного тока! Протекающий по обмотке переменный ток делает магнитный поток. Этот магнитный поток точно Цепь переменного тока с индуктивностью так же, как и ток, изменяет свою силу и направление. При изменении магнитного потока по закону индукции в обмотке создается ЭДС (электродвижущая сила). Направление ЭДС обратно полярности подаваемого напряжения. Это явление именуется самоиндукцией.Самоиндукция в цепи переменного тока отчасти проявляется в сдвиге по фазе меж током Цепь переменного тока с индуктивностью и напряжением и отчасти — в падении индуктивного напряжения. Сопротивление цепи переменного тока становится существенно выше рассчитанного либо измеренного сопротивления этой же цепи неизменному току.Сдвиг по фазе меж током и напряжением обозначается углом φ. Индуктивное сопротивление (реактивное) обозначается X, активное сопроти ние —R, кажущееся сопротивление цепи либо проводника —Z. Полное сопротивление (импеданс Цепь переменного тока с индуктивностью) рассчитывается по формуле: Где: Z - полное сопротивление, Ом R - активное сопротивление, Ом Закон Ома для цепи переменного тока: U=I*Z Где: U - напряжение, В I - ток, А Z - полное сопротивление, Ом потому мощность P полная (произведение тока и напряжения) = 220*значение тока полное.

12. Однофазовая эл. цепь переменного тока с Цепь переменного тока с индуктивностью емкостью. Реактивное сопротивление емкости. Кривые напряжения, тока и моментальной мощности. Векторная диаграмма.

Емкость

Все проводники с электронным зарядом делают электронное поле. Чертой этого поля является разность потенциалов (напряжение). Электронную емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC Цепь переменного тока с индуктивностью / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость производится в виде 2-ух проводников разбитых слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада Цепь переменного тока с индуктивностью является большой единицей, к примеру, емкость земного шара равна ≈ 0,7 Ф. Потому в большинстве случаев употребляют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада);
1 нФ = 10–9 Ф, (нФ – нанофарада);
1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является знак

Для емкостного сопротивления была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс находится Цепь переменного тока с индуктивностью в зависимости от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи именуют величину X = XL - XC.

Кривые. Переменный синусоидальный ток в течение периода имеет разные секундные значения. Естественно поставить вопрос, какое же значение тока будет измеряться амперметром, включенным в цепь?

При расчетах цепей переменного тока, также Цепь переменного тока с индуктивностью при электронных измерениях неловко воспользоваться моментальными либо амплитудными значениями токов и напряжений, а их средние значения за период равны нулю. Не считая того, об электронном эффекте временами изменяющегося тока (о количестве выделенной теплоты, о совершенной работе и т. д.) нельзя судить по амплитуде этого тока.

Более комфортным оказалось введение понятий так именуемых Цепь переменного тока с индуктивностью действующих значений тока и напряжения. В базу этих понятий положено термическое (либо механическое) действие тока, не зависящее от его направления.

Действующее значение переменного тока - это значение неизменного тока, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при переменном токе.

Для оценки деяния, производимого переменным Цепь переменного тока с индуктивностью током, мы сравним его деяния с термическим эффектом неизменного тока.

Мощность Р неизменного тока I, проходящего через сопротивление r, будет Р = Р2r.

Мощность переменного тока выразится как средний эффект моментальной мощности I2r за целый период либо среднее значение от (Im х sinωt)2 х r за Цепь переменного тока с индуктивностью то же время.

Пусть среднее значение t2 за период будет М. Приравнивая мощность неизменного тока и мощность при переменном токе, имеем: I2r = Mr, откуда I = √M,

Величина I именуется действующим значением переменного тока.

Среднее значение i2 при переменном токе определим последующим образом.

Построим синусоидальную кривую конфигурации тока. Возведя Цепь переменного тока с индуктивностью в квадрат каждое секундное значение тока, получим кривую зависимости Р от времени.

Действующее значение переменного тока

Обе половины этой кривой лежат выше горизонтальной оси, потому что отрицательные значения тока (-i) во 2-ой половине периода, будучи построены в квадрат, дают положительные величины.

Построим прямоугольник с основанием Т и площадью, равной площади Цепь переменного тока с индуктивностью, ограниченной кривой i2 и горизонтальной осью. Высота прямоугольника М будет соответствовать среднему значению Р за период. Это значение за период, вычисленное с помощью высшей арифметики, будет равно 1/2I2m. Как следует, М = 1/2I2m

Потому что действующее значение I переменного тока равно I = √M, то совсем I = Im / √2

Аналогично зависимость меж Цепь переменного тока с индуктивностью действующим и амплитудным значениями для напряжения U и Е имеет вид:

U = Um / √2,E= Em / √2

Действующие значения переменных величин обозначаются строчными знаками без индексов (I, U, Е).

На основании произнесенного выше можно сказать, что действующее значение переменного тока равно такому неизменному току, который, проходя через то же сопротивление, что Цепь переменного тока с индуктивностью и переменный ток, за то же время выделяет такое же количество энергии.

ВЕКТОРНАЯ ДИАГРАММА

графич. изображение значений физ. величин, изменяющихся по гармони ч. закону, и соотношений меж ними с помощью векторов. В. д. обширно используют в электротехнике, акустике, оптике и т. д. В. д. в электротехнике - графич. изображение в виде Цепь переменного тока с индуктивностью векторов синусоидально изменяющихся электрич. величин. На рис. дана В. д. силы тока i = Imsin(2ПИft- 30°) и электрич. напряжения и = Um sin2GBft(i,u - секундные значения величин, Im, Um - их амплитуды, f - частота, t - время, 30 - нач. фаза тока при t = 0).

Векторная диаграмма

13. Однофазовая эл. цепь переменного тока с Цепь переменного тока с индуктивностью R, L и C. Определение полного сопротивления Z. Треугольник сопротивлений и мощности.

Разглядим электронную цепь, схема замещения которой показана на рис. 3.10. Цепь состоит из 3-х параллельных веток. Общим для всех веток является напряжение, приложенное к цепи.


Рис. 3.10 – Схема замещения параллельной цепи R, L, C

Пусть заданы напряжение U, характеристики R Цепь переменного тока с индуктивностью, L, C и частота f. Требуется найти все токи и выстроить векторную диаграмму. Токи в ветвях соответственно равны (расчёт проводим в всеохватывающей форме)

где всеохватывающие сопротивления веток соответственно равны

Z1 = R1, Z2 = jωL = jXL, Z3 = - j1/ωC = - jXC.

Общий ток согласно первого закона Кирхгофа

I = IR + IL + IC.

Построение векторной диаграммы токов и Цепь переменного тока с индуктивностью напряжения для параллельной цепи комфортно начинать с построения вектора напряжения U. Этот вектор проводим совпадающим с положительным направлением реальной оси + 1. (Вообщем вектор напряжения откладывают в случайном направлении). Этот вектор является базисным вектором.

Вектор тока IR совпадает по фазе с напряжением; вектор тока IL через индуктивность отстает от напряжения Цепь переменного тока с индуктивностью на угол 90°; вектор тока IС через ёмкость опережает напряжение на угол 90°. Условно принимаем, что IL

Геометрическая сумма 3-х векторов токов IR, IL, IС даёт вектор тока в неразветвлённый части цепи. Этот вектор I опережает вектор приложенного к цепи напряжения на угол φ. В данном случае молвят об ёмкостном нраве нагрузки в Цепь переменного тока с индуктивностью цепи. В построенной диаграмме можно выделить треугольник ОАВ, именуемый треугольником токов. Раздельно он показан на рис. 3.11, б. Сторона О1В1 именуется активной составляющей тока, сторона А1В1 – реактивной составляющей тока. Из треугольника токов получаем модуль полного тока

где

IХ = IL + IС.


Рис. 3.11
а) векторная диаграмма для параллельной цепи R, L Цепь переменного тока с индуктивностью, C
б) треугольник токов; в) треугольник проводимостей

Выражения для составляющих токов и угла φ

IR = I·cosφ, IX = I·sinφ, .

Разделив стороны треугольника токов на напряжение, получим треугольник проводимостей О2А2В2, рис. 3.11, в. В нем сторона О2В2 представляет активную проводимость сторона А2В2 – реактивную проводимость а гипотенуза О2А2 представляет полную Цепь переменного тока с индуктивностью всеохватывающую проводимость

у = g + jb,

а ее модуль

Обычно проводимостями пользуются при преобразовании сложных электронных цепей в более обыкновенные.

Z.При определении общего сопротивления наружной цепи необходимо ложить ее реактивное и активное сопротивления. Но ложить эти два разных по собственному нраву сопротивления нельзя.

В данном случае полное сопротивление цепи Цепь переменного тока с индуктивностью переменному току находят методом геометрического сложения.

Строят прямоугольный треугольник (см. набросок 1) одной стороной которого служит величина индуктивного сопротивления, а другой - величина активного сопротивления. Разыскиваемое полное сопротивление цепи обусловится третьей стороной треугольника.

Набросок 1. Определение полного сопротивления цепи, содержащей индуктивное и активное сопротивление

Полное сопротивление цепи обозначается латинской буковкой Z и измеряется в Цепь переменного тока с индуктивностью омах. Из построения видно, что полное сопротивление всегда больше индуктивного и активного сопротивлений, раздельно взятых.

Алгебраическое выражение полного сопротивления цепи имеет вид:

где Z — общее сопротивление, R — активное сопротивление, XL — индуктивное сопротивление цепи.

Таким макаром, полное сопротивление цепи переменному току, состоящей из активного и индуктивною сопротивлений, равно корню квадратному Цепь переменного тока с индуктивностью из суммы квадратов активного и индуктивного сопротивлений этой цепи.

Закон Ома для таковой цепи выразится формулой I = U / Z,где Z — общее сопротивление цепи.

Из треугольника напряжений можно получить треугольник сопротивлений для рассматриваемой цепи, разделив стороны этого треугольника на полный ток (рис.2 а), из которого следует, что

(2)

а) б)

Z S

X Цепь переменного тока с индуктивностью=XL-XC

j j Q

R P

Рис.2. Треугольники сопротивлений и мощностей.

Приобретенные выражения (2) демонстрируют, что угол сдвига фаз j меж током I и напряжением U питающей сети зависят от нрава сопротивлений, включенных в цепь переменного тока.

Умножив стороны треугольника сопротивлений на квадрат тока в цепи I2, получим треугольник мощностей (рис.2 б). Активная Цепь переменного тока с индуктивностью мощность цепи переменного тока

P=S cosj

Либо

Из треугольников сопротивлений и мощностей можно установить связь меж параметрами электронной цепи:

(3)

14. Условия пришествия резонанса напряжений. Признаки резонанса напряжений. Волновые сопротивления. Добротность контура.

Резонанс напряжений выражается в том, что полное сопротивление контура становится минимальным и равным активному сопротивлению, а ток становится наибольшим Цепь переменного тока с индуктивностью.
Условием резонанса напряжений является равенство частот генератора и контура f = fo, либо равенство индуктивного и емкостного сопротивлений для тока генератора: xL = хC.

При резонансе напряжение на катушке либо на конденсаторе в Q раз больше, чем напряжение генератора, равное U — Ir. Напряжение на L либо С равно UL Цепь переменного тока с индуктивностью = Uc = р. Потому

Чем выше добротность контура Q, тем больше повышение напряжения при резонансе.

Увеличение напряжения на катушке и на конденсаторе типично для резонанса напряжений, само заглавие которого подчеркивает повышение напряжения в момент резонанса.

ДОБРОТНОСТЬ КОНТУРА – охарактеризовывает качество колебательного контура, обозначается Q. Численно равна отношению напряжения на любом из реактивных участков на резонансе к Цепь переменного тока с индуктивностью напряжению, подводимому к контуру, либо отношению реактивного сопротивления к активному. При большой добротности контура напряжение на нем существенно превосходит напряжение на входе контура.

15. Условия пришествия резонанса токов. Векторная диаграмма. Признаки резонанса токов.

Резонанс токов появляется в цепях переменного тока состоящих из источника колебаний и параллельного колебательного контура. Резонанс тока Цепь переменного тока с индуктивностью это повышение тока проходящего через элементы контура при всем этом повышение потребление тока от источника не происходит.

Набросок 1 — параллельный колебательный контур

Для появления резонанса токов нужно чтоб реактивные сопротивления емкости и индуктивности контура были равны. Также частота собственных колебаний контура была равна частоте колебаний источника тока.

Векторная диаграмма.Неважно Цепь переменного тока с индуктивностью какая электронная синусоидальная величина на плоскости может быть представлена вращающимся против часовой стрелки радиус-вектором, модуль которого равен амплитуде функции, а скорость вращения – угловой частоте фазы. 1) Секундное значение на векторной диаграмме определяется как проекция радиус –вектора на ось ординат .2) Обычно векторные диаграммы для удобства строятся не для амплитудных, а для Цепь переменного тока с индуктивностью реальных значений. 3) Исходная фаза на векторной диаграмме определяется углом меж радиус-вектором и осью абсцисс. Если угол отсчитывают от оси абсцисс к вектору по направлению вращения, исходная фаза положительна. 4) Сдвиг фаз на векторной диаграмме определяется углом меж векторами напряжения и тока. Если угол отсчитывается от тока к напряжению по направлению Цепь переменного тока с индуктивностью вращения, то сдвиг фаз положителен.

Признаки.Резонанс токов может появиться при параллельном соединении индуктивности и емкости (рис. 198, а). В безупречном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений веток, содержащих индуктивность и емкость, т. е. ?oL = 1/(?oC). Потому что Цепь переменного тока с индуктивностью в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части
цепи при резонансе I=U?(G2+(BL-BC)2)= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут смещены по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в Цепь переменного тока с индуктивностью емкости I с опережает напряжение U на 90°). Как следует, таковой резонансный контур представляет собой для тока I нескончаемо огромное сопротивление и электронная энергия в контур от источника не поступает. В то же время снутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией снутри Цепь переменного тока с индуктивностью контура. Эта энергия перебегает из индуктивности в емкость и назад.

16. Понятие коэффициента мощности cosφ. Методы увеличения cosφ.

Коэффициент использования мощности ( ) охарактеризовывает степень преобразования электроэнергии в другие виды, другими словами в работу, определяет качество использования получаемой потребителем электроэнергии.

(вся энергия преобразуется в работу),

(только часть работы употребляется).

Для увеличения Цепь переменного тока с индуктивностью коэффициента мощности (cosφ) электронных установок используют компенсацию реактивной мощности.

Роста коэффициента мощности (уменьшения угла φ - сдвига фаз тока и напряжения) можно достигнуть последующими методами:

1) подменой не много загруженных движков движками наименьшей мощности,

2) снижением напряжения

3) выключением движков и трансформаторов, работающих на холостом ходу,

4) включением в сеть особых компенсирующих устройств, являющихся генераторами опережающего Цепь переменного тока с индуктивностью (емкостного) тока.

На массивных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы - синхронные перевозбужденные электродвигатели.

17. Принцип получения трехфазных э.д.с. Трехфазная электронная сеть при соединении обмоток генератора и приемника звездой. Развертка и векторная диаграмма э.д.с.

Трехфазная цепь является личным случаем многофазных систем электронных цепей, представляющих Цепь переменного тока с индуктивностью из себя совокупа электронных цепей, в каких действуют синусоидальные ЭДС схожей частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии.Каждую из частей многофазной системы, характеризующуюся схожим током, принято именовать фазой. Таким макаром, понятие "фаза" имеет в электротехнике два значения: 1-ое – аргумент синусоидально изменяющейся величины, 2-ое Цепь переменного тока с индуктивностью – часть многофазной системы электронных цепей. Цепи зависимо от количества фаз именуют двухфазными, трехфазными, шестифазными и т.п.

Самым простым методом сотворения многофазных ЭДС является внедрение вращающегося магнитного поля в трехфазном генераторе . В статоре закладывается система обмоток, которые можно представить условно сосредоточенными индуктивностями, расположенными в пространстве под углом 1200, имеющими однообразное число витков Цепь переменного тока с индуктивностью. Снутри статора по направлению стрелки с частотой w крутится ротор , представляющий из себя неизменный магнит. Вся система крепится на станине . В согласовании с законом электрической индукции, в катушке индуктивности крутящееся магнитное поле наводит ЭДС, изменяющуюся по закону синуса. А потому что обмотки размещены под углом 1200 , то ЭДС Цепь переменного тока с индуктивностью в каждой обмотке сдвигается во времени на тот же угол.


centralnoj-detskoj-biblioteki.html
centre-del-modernisme-pravila-vizhivaniya-chto-kak-viglyadit-.html
centri-i-obekti-kulturno-poznavatelnogo-turizma-v-rossii.html